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ASYMPTOTIC ANALYSIS OF CONVECT IVE DIFFUSION IN PROBLEMS WITH A D 
IN THE CATALYTIC PROPERTIES OF THE SURFACE AROUND WHICH THE FLOW 

V.G. KRUPA and G.A. TIRSKII 

ISCONTINUITY 
TAKES PLACE* 

The stationary concentration distribution in the flow round bodies with a 

discontinuity in their surface catalytic properties is investigated. An 

asymptotic analysis of this problem is carried out on the basis of the 

Navier-Stokes equations when Re-cc in the neighbourhood of the point 

of discontinuity in the catalytic properties, and the corresponding boundary 

value problems for the leading terms in the expansion of the required 

functions are formulated. Two spatial problems are solved in which 
account is taken of the transverse diffusion during the circumfluence of 

a planar surface with a rectangular insert endowed with different catalytic 

properties. Cases are considered when the diffusion flux of recombining 

particles changes in a stepwise manner on-passing over the surface of the 

insert and when the main surface is non-catalytic but the insert is ideally 
catalytic. 

1. Let us consider the stationary flow of a bindary mixture of a chemically reacting com- 
pressible gas along the surface of a disc and let this disc have a discontinuityinits surface 

catalytic properties at a distance x0 = O(1) from the origin. We assume that E z Rem';: --f (1, 

Re - poavcax,i~, (quantities with the subscript 50 correspond to values of the parameters in 
the approach stream). In a rectangular system of Cartesian coordinates 2, !/ (see /1/, for 
example), the Navier-Stokes equations in the dimensionless variables 

9.* _ .r -- 111 , 
I” 

+$, p*+, v*=+, k*.+- 
L ,c.z 

T*=+, T,:=Y”2, ,*=_!%, 
(‘px o_v_z 

/z* =+ , 
CJm a 

W’* - w’.Q 
!,_V_ 

take the form (we shall omit the asterisks above the dimensionless quantities) 

v.pv = 0, pv.rv = - vp + E2V.T (1.1) 

P v.vc = &2 V(p Sc$Vc) + UJ' 
___- 

*Prikl.Matem.Mekhan.,52,3,450-459,1988 
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p~p~.VT = v.Vp - (h, - h,)w' $ e2 [T: e 4- V (pc,o-'VT)t 

(CP. - cpm)p sc-lVc.VTl 

Quantities with the subscripts a and m refer to atoms and molecules respectively, v= 

(u, u); p, P, T, and h are the velocity, density, pressure, temperature and enthalpy, c is the 

mass concentration of the atoms, FY CPI SC and D are the coefficient of viscosity, the 

specific heat capacity and the Schmidt and Prandtl numbers, w' and RA are the chemicalsource 

term and the universal gas constant and e is the deformation rate tensor. 

We shall specify the boundary conditions on the body in the following.form (we assume that 

the dimensionless rate constant of the heterogeneous reaction is of the order of Eat k,, ki = 

0 (I)): 

v = 0, T = T, (P), p SC-’ aciay = &‘*i-2pkjc, y = 0 

k = k,, t < 0; k = k,, .z > 0 

(1.2) 

Let us assume that the external flow (unperturbed by the discontinuity in the catalytic 

properties) is described by the boundary-layer equations. Then, 

A se aT/aq = 0 (I), c; EC hi@ = 0 (1) (1.3) 

where 11 = Y/E is the boundary layer variable. 

We shall further assume that the quantities cp. (T), h, (T), c,,,,(T), h,,,(T), SC,, p, o, w are 

of the order of unity and that the order of magnitude of the atomic concentration c when x = 0 
is determined from the solution of the external problem. To be specific, let us postulate 

that, in the outer unperturbed boundary layer, the convective thermal flux terms, due to 

thermal conduction and diffusion, are of the same order of magnitude: 

aT/aq - adall - 0 (I) ,(1.4) 

It then follows from (1.2) and (1.4) that, when q = 0, x = 0, that is, as the point of 

discontinuity is approached from the left, 

C=O(E'-"I), CZ,(,i .(1.5) 

Let us now first consider the case when cc1 < a, (a stepwise transition to a surface with 

a smaller or equal catalytic activity) and introduce the new variables and functions (the 

quantities with zero subscript are found from the solution of the external parabolic problem 

when 5 = o-,, 11 = 0): 

5 = E"Yzl, y = EX"Y,, v = &'I'Vr + . . . ( 7 = d’z, + . . .( (1.6) 
T = T,, + GTI + . . . , c = co + E’&~ + . . . , 
P = P,, + EP, + . . . , p = ~0 + . . ., p = f+, + ‘. . . , 
SC = SC, + . . .) (5 = o. + . . .( cp = $0 + . f . 

where the string of dots denotes terms with a higher order of smallness compared with the first 

term. The form of the expansions for v, T and c is determined from the conditions for match- 

ing with the external solution of (1.3), (1.4) and (1.5) and by the boundary conditions when 

y=o. The form of the expansions for x and y is determined from the condition that, in 

the neighbourhood of the point of discontinuity in the surface catalytic properties, the linear 

scales for the development of diffusion are of the same order of magnitude in the longitudinal 

(along the disc) and transerve directions and the condition that the convective and diffusion 

terms in the diffusion equation are of the same order of magnitude. 

Let us now consider the boundary conditions for the concentration c on the surface y,= 0 
and put c0 (e) = c~'FJ-~I, c 0' = 0 (1) (see (1.5)). By substituting the expansion for c (1.6) into 

(1.2), we obtain, as E+ 0, 

ac,/ay, = K, (co' + C1&a,-'q, .q < 0 

&,/i$/, = K, (Co’E’=, + CIEaz-'/*), x1 2 0 

Ki = poki Sc,lpo 

41.7) 

Depending on the values of the quantities a, and a, (we have already noted that a,<aI), 

four forms of conditions (1.7) are possible; 

k,/ay, = K,c,‘, .q < 0 11.8) 

Lk,/ay, = K,c,’ (a2 = aJ 8c,/8y, = 0 (aI < a,), XI> 0 



(1.9) 

(1.10) 

(1.11) 

(1.12) 

for the first terms in the expansion. 

The boundary conditions on the surface for the system of Eqs.(1.12) will have the form 

V1 :: 0, T, : 0, y, =. 0 (1.13) 

while, in the case of cIt the conditions are (1.8)-(1.11). 

The boundary conditions at infinity are determined by the conditions for matching with 

the solution in the boundary layer: 

(1.14) 

AS x+00, the boundary conditions are determined by the approach to the boundary-layer 

solution: 

a$/ax,2 = 0, a~Tiax,2 = 0, a2cliax,z = 0, p, = 0, x1 + Q? (1.15) 

The system of Eqs.(l.l2) (with the exception of the fourth equation) is identical with 

the system for an incompressible viscous fluid with constant properties and admitoftheobvious 

solutions of the dynamic and thermal problems 

U1 = Uy,, L)r -: 0, p1 = 0, T, = Ay, 

The diffusion problem is separated from the dynamic and thermal problems and reduces to 

the solution of the equation 

uy,ac,iax, = pO SC,-v,v, (1.16) 

and, in the case of boundary condition (1.11) has the trivial solution CI =K,c,'y,. In order 

to take account of the discontinuity in the boundary conditions, the following terms in the 

expansion are necessary. 

Let us now consider the case when a,< a,, that is, when there is a stepwise transition 

towards the surface with the greater catalytic activity. For simplicity, let us assume that 

a, = 1. Then, c = c,, = 0 (1) when ', = 0, x=0-. 

When 'lz < aZ < I, the solution for all of the functions (with the exception of c) will 
be sought in the form of (1.6), while the solution in the case of the concentration will be 
sought in the form 

C = c, + E~Z~'/Vr -/- . . . (1.17) 

By subsituting the expansions (1.6), (1.17) into (1.1) and (1.2) we obtain the system 
(1.12) with boundary conditions (1.13)-(1.15) for the first terms of the expansion in the case 

of "19 I? T and p, _ The boundary conditions for the concentration will have the form 

ac,hw, = 0, 51 < 0; aClay, = K,c,, II : 0, y, = 0 (1.18) 

c1 = 0, y, -+ 00; c1 = 0, x1 + --oo; a%2,iax,2 = 0, II + m 

It is obvious that, in this case, the solution of the diffusion problem reduces to the 
solution of Eq.(1.16) with the boundary conditions (1.18). We note that Eq.(1.16) with 
boundary conditions (1.8)- (l.lO), (1.18) and (1.14), (1.15) has been solved in a number of 

papers both analytically /2-5/ and numerically 16, 7/. 

When c&z ===z 'la r it follows from (1.2) that, in this case, the change in the concentration 
in the neighbourhood of the point of discontinuity will be a quantity of the order of unity. 
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We shall seek the solution for I, Y, v,r, T and p in the form of (1.6) while, for the remaining 
functions, we shall have 

c=c,+...,p =p,+...,Sc=Sc,+...,cJ=al+..., (1.19) 

p = pq + . * ., c* = CPl + . . . 

Substituting expansions (1.6), (1.19) into (1.11, we obtain, as &--to, the system 

V 1’PlVl = o, plvI*V,v, = -VA + VI?, (1.20) 

PlVI.VC, = VI (PL1%lVIcd 

PICpIV1.VITI = VI (wpPJ;‘V1~,) + (cp, - Q!m)P$C,-‘V,C,~V,~, 
pl/m = pOI(T,,R) = const 

for the principal and first terms. 

The boundary conditions for v1r Pl and Z', are the earlier boundary conditions ((1.14) 

and (1.15)) while, for the concentration, they will be 

ac,ii?Y, = 0, q < 0; ac,lay, = plk,Sc,c,ipl (ct2 = V2), cl = 0 

(a, < ‘/A? Xl>, 0, Y, = 0 

(1.21) 

In the case when a2 < 'Ia, the zone of relaxation to equilibrium was neglected. 

Let us now consider the circumfluence of a smooth convex planar profile in the above- 
mentioned formulation and introduce the following natural coordinate system. The z-axis (the 

length of an arc) is directed along the surface of the body and the y-axis along the normal to 
it. It is obvious that, on account of the local nature of the analysis which has been carried 
out, the problem on the discontinuity in the catalytic behaviour reduces in this case to that 
which has just been considered, that is, (1.16) or (1.20) with the corresponding boundary con- 
ditions. The quantities with the zero subscript are equal to their values obtained from the 

solution of the external parabolic problem on the surface of the body when x=x0-o in the 
natural coordinate system. 

Hence, on passing from the surface for which the catalytic recombination constant is 
&k, to a surface where this constant is equal to @k,, when a, < a,, the flow in the 

neighbourhood of the discontinuity is described by Eq.Cl.16) with the boundary conditions (l-8)- 

(1.11), (1.141, (1.15). If a,=i>a,,, then, when l/a<az<~, the flow is also described by 
(1.16) with the boundary conditions (1.18). When a,<'ll, the flow is described by the 
boundary value problem (1.20), (1.141, (1.15) and (1.21). The size of the perturbed domain 
is a quantity of the order of EY' = l&/a. 

2. Let us now obtain a solution of the diffusion problem when, on the planar surface, 

there is a rectangular insert with other catalytic properties, the sides of which are parallel 

and perpendicular to the approach stream and are described by the equations z=o and x=0 

respectively. On passing onto the surface of the insert, the concentration flux changes in a 

stepwise manner. We start out from the diffusion equation written in the form (cf. (1.16)) 

yacia~ = away2 _t awaz= (2.1) 

Let us specify boundary conditions of the type (1.0) when y = 0. Then, without loss 
of generality, it is sufficient to consider the following conditions: 

c=o, r=o; c=o y-+oo; aday=-1,2<0, aday=i, 

z > 0, y = 0, awa3 = 0, 2 -+ t~0 
(2.2) 

A similar problem has been solved numerically in /7/. The term C3=c/ax2, omitted from 

(2.1), is negligibly small when x>-,1 /7/. 

Let us carry out a Laplace transform with respect to x /8/ 

m 

f(p, y, z)= S exp(- Pr)C(r, Yy z)dr 
0 

Using the method of separation of variables, we get 

cp = Ai (P-" (UP + 19) 

-m 

p’/aAi’ (J_‘Zp’/t) (2.3) 



where Ai (s) and Ai' (s) are the Airy function of the first kind and its derivative. A cut 

is made in the p-plane along the negative real axis and the branches of the functions (n. -i i[j)' 

are fixed by the condition as cc- +co. 
;-Pa 

(a -j- ip)' ---f a' Hence, 'p decays exponentially as 

/g/. 
We note that C(X, y,z) =- -c (2, I/, -2) and we shall therefore subsequently assume that 

z>o. By closing the path of integration in (2.3) with an arc of a circle j h I= R in trie 

upper half of the k-plane and using Jordan's lemma /8/ (the zeros of the function Ai' (h2p-"') 

where p is fixed and p+ 0 are simple), we get 

where --a,' (n = 0, 1, 2, . . .) are the zeros of the function Ai' (s). It follows from (2.4) that 

conditions (2.2) are satisfied as z-+-+X. 

Next, let us seek a solution when y == 0. Then, (2.4) takes the form 

f(p, 0, z)=LpL; ,J&q=iJ ezpi-$v'w ( A=ni(O) 

n=lJ 
“n Ai’o (2.5) 

It follows from (2.5) that f =0 when z =0 since the equality A + Z (0) =0 is 

valid. In order to prove this equality, it is sufficient to consider (in the sense of the 

principal value) the integral 

and to close the integration path in the upper half of the h-plane. 
By applying the inverse Laplace transformation formula /8/ to f, we obtain 

from (2.5) where use has been made of the fact thatd = Ai (O)iAi' (0) = -P (V3)l(3W (a/,)) /9/. 

The first term in (2.6) corresponds exactly to the parabolic solution of system (2.1), (2.2) 

(when @c/dz2 is neglected) when z>o. The second terms describes the effect of transverse 

diffusion (directed along the z-axis). It follows from (2.6) that C&IS is the function 

Z&Is, that is, the size of the domain influenced by transverse diffusion increases as z - ~'1;. 
On account of the rather complex expression (2.6), we shall confine ourselvestoobtaining 

the main terms of the asymptotic expansion for c at small and large values of z. 

By means of the Euler-McLaurin theorem /lo/, we obtain, allowing for the asymptotic 

nature of the behaviour of the zeros a,' as n-Pm, /9/ that 

z (j) = -_il .+ 2n-lp% 111 p" -I- 0 (p") (2.T) 

After making the substitution Q =pz'/* in the integral (2.6), we substitute (2.7) into 

(2.6) and carry out a term by term integration. Then, 

CS Cd' = 2n-"Z In 2 + 0 (Z), z = Z&" (2.8) 

It follows from (2.8) that, in the neighbourhood of the line of discontinuity 2 = 0, 

the function C is continuous and dCfaZ has a logarithmic singularity. 

In the case when z> 1, we proceed in the following manner. By applying criterion B 

/ll/, it can be proved that term by term integration when z>O in (2.6) is valid. BY 
making the substitution q‘= prak*l' -' Z 1% in (2.6) and applying the method of steepest descent 

/12/g we obtain 

(2.9) 

where -a,' is.the.value of the first zero (the minimum in absolute magnitude) of the function 
Ai'( a,' = 1.01879. In (2.9), use has been made of the property that a,' increases 

monotonically as n increases. 



353 

The effect of transverse diffusion therefore falls off exponentially when z> 1. 
The dependence c(Z) is shown in Fig.1 where the solid line represents the numerical 

solution /7/ of problem (2.1), (2.2) obtained by the method of alternating directions while 
the broken line was obtained using formula (2.9). The dot-dash line corresponds to the bound- 
ary-layer soltuion C= -3’W (a/3) = -i.536. It is seen that the difference between the 
numerical solution and the asymptotic solution (Eq.CZ.9)) is less than 5% when Z22.5 and 
that the asymptotic solution merges with the boundary-layer solution (at difference of less 
than 2%) when Z> 3.5 

-1 c 

‘:/r;,i 

3. Let us now consider the spatial diffusion problem when 

\ the main surface is non-catalytic and the rectangular insert is 
The solution is assumed to be continuous and 

\ 
ideally catalytic. 

\ bounded. We note that this problem also arises in the theory of 
-I.2 \ 

a film anemometer /13/. 
\ Let us introduce the function 8 = 1 - C. Then, the problem 

'-.- takes the form -._ 

-1.Y yawax = aZeidy2 _t awa22 (3.1) 
1 2 3 2 6 = 0, x = 0; cwdy = 0, z< 0; 8 = 1, 2 > 0, y = 0, 5 > 0 

8=1, y-too; e-to, Z.-+--o0 
Fig.1 

We replace the condition that 0 = 1 when z> 0 by 

e (Z, 0, 2) = $, z > 0 
b+im 

%=& 5 
b-im 

(3.2) 

The p-plane is cut in the same way as in Sect.2 and a,is a small positive quantity 
introduced in order to guarantee the existence of the Fourier transform of 8 and it will be 
allowed to tend to zero when this becomes convenient since (when z > 0) 

lim $ (ao. s, z) = 1, lim II, (a,, IC, z) = 0 
cl-0 x-0 

Let us now apply a Laplace transform with respect to x to the function 8. Then, from 
(3.1) and (3.2), we get 

Ypf = a2fiag + a=f,:iw 
aflay = 0 z -c 0, f = exp (--a,p”~z)/pz > 0, y = 0 

f-0, y-too; f-0, z--m 

(3.3) 

(3.4) 

(3-5) 

Let us further assume that the last condition in (3.5) can be strengthened: 

f = 0 (exp (bOp"az)), z --f --03 (3.6) 

for all y and a certain real number b,>O. The validity of this hypothesis willbe confirmed 
below. 

Problem (3.3)-(3.6) is solved by the Wiener-Hopf method /14/. By carrying out a Fourier 
transformation with respect to Z, we get from (3.3), after the condition at infinity has been 
satisfied, that 

4, = @+ + D_ = H (p, k)Ai (p-““(yp + k*)) (3.7) 
cc 

O+= ( fedikzdz, (I,_= [ feeik’dz 
-cc i 

where Ai(8) is the Airy function of the first kind. 
From the boundary conditions when y = 0 and the requirement that the solution should be 

bounded, it can be deduced that the function a_ is analytic in the lower half-plane (Im (k)< 
a, Im (ip’ls)) and that @+ is analytic in the upper half-plane Im (k) > -b, Im (ip’la). The value 
of p is fixed and p+O. When y=o, we obtain 

CD=Q7-- 
I 

p (k - iaop”“) 
= If Ai (s) 

aa, 
?!t% = Hp’l~4i* (s), ay= dy 

s = k2p-Va 

from (3.4), (3.7). 

(3.8) 
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By eliminating H from (3.8), we find 

We shall use the Wiener-Hopf method to solve Eq.(3.9). Since the zeros of Ai (s) arld 
Ai' (s) are located in the k-plane on the stright line k 2 ip’ld (t is a real parameter) therl, 
by choosing a, and b, to be smaller than the square root of the absolute value of the first 

zero of Ai'( we obtain that each term is definite and different in the band -b, Im(ip':q)< 

Im (k) < a, Im (ip’:~). We next find d@_idy. For this purpose, let us represent the left-hand 
side of (3.9) as the sum of two functions which are analytic when Im (k) >% --O, 1111 (ip’,~) and 

1111 (k) < a, Im (ip':~) respectively. 
Let F = P+ (k,p)F_ (k, p). The function f“+ (F_) is analytic and does not have any zeros 

in the upper (lower) k half-plane (the expressions for E', and P_ (the factorization of F) 

will be obtained below). Eq.(3.9) can then be written in the form 

j 
CI,,F_ (k, p) - - 

(F, (k. p) F, (kzop ‘i*, P)) ; 
p (k - iaop’is) 

1 dW 
t 

‘F, (‘U”P’J”, P) 

F_ (k, IJ) iiy p (k - iaop’$ 

(3.10) 

Let us assume that dddy has a singularity which can be integrated with respect to z 

tiS z-to+. Then, d@,/~Vy - 0 as jkI+co. According to the principle of analytic con- 

tinuity, there exists an integral function I (k> P) which is identical to each of the parts 
of Eq.(3.10) where this part is defined. It tends to zero for each fixed PfO as k-too 
since, as we shall show later, 1 F* 1 = (1 (I k I’/;). According to Liouville's theorem, I (k, p) E. 
0 and therefore 

b@_ __ --- il.‘, (iq$J’i~, p) F_ (k, y, 

“!I p (k rtl”p’:a) 

Let us now factorize the function F. Let -a* (/L = 1, 2, . . .) and --a,' (n 

the zeros of the functions Ai (s) and Ai' (s). It can be proved that 

.ti’ (k”) 
\io- - (&i’” ev.a(k? + q,‘)n_(k)n+(k) 

II, ES 17, (k) = ?!I s e-‘/m) 

where y is Euler's constant. 

It follows from (3.9) and (3.12) that 

F+ zz (2X'n-'erp-')% (k + iab’l’p’iz) :I+ (kr,-‘A) 

(3.11) 

0, 1, .) be 

(X12) 

(3.13) 

We note that, by making use of the asymptotic nature of the behaviour of the zeros -a,' 

and -a, as 12-+00 /9/, it is possible to obtain rJ* = 0 (I k j-‘/l) and, therefore, I?, :- 

0 ( I k I”4 as jkI-+co. By virtue of (3.11) and (3.13), we have 

am- ,\i’ (_ a~,2) k - ,U;,‘izp’i’ II_ (k‘+) _ ~~ - 
&I ‘\i (- ai?) 0 1," - ll;"? II_ (ioo)(k - lo~p'~~) 

(3.14) 

In order to prove formula (3.12), let us represent the integral functions Ai' (k*) and 

Ai (kz) in the form of an infinite product. By making use of Theorem 2 in Chapter 5 of Sect. 
31 in /15/, we obtain (taking account of the numbering of the zeros --a, and --on'), after re- 

grouping the factors, 

It remains to note that Xl= 0. In order to prove this equality, let us consider (in the 

sense of the principal value) the integral 

.L;L 

s (g!$p$g)dl=O 
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and close the integration path in the upper half of the h-plane. We then use the residue 
theorem. 

So, apart from a constant factor, expression (3.15) is identical with (3.12) and the value 
of this factor can be determined by allowing k to tend to infinity. 

Let us now calculate the diffusion flux aciay on the surface of the insert when 2 > 0. 
We carry out an inverse Fourier transformation of the function a@_/ay: 

-co 

We substitute (3,141 into (3.16) and close the integration path in the upper half-plane. 
Then, by using the same reasoning as in the proof of Jordan's lemma /a/, we obtain (by making 
a,, tend to zero) 

(3.17) 

fI”=--i lim Ii_(k--la’,“) 
Ii&f 

It is also necessary to check postulate (3.6). Assuming that it suffices to verify this 
when y=O, we obtain from (3.10) and (3.13) that the function a+ is regular when k = -ia,dl* 
but has an infinite number of poles at the points -ian"l~p'i? Closure of the integration 
contour in the lower half-plane when calculating the inverse Fourier transform shows that, as 
z--r-cc 

where e is an arbitrary small positive number which confirms (3.6). 
Finally, we apply an inverse Laplace transformation to the function j': 

By substituting (3.171 into (3.18) and making the change of variables Q = p’“&, we 
obtain (allowing for the definition of the function Ai in terms of a contour integral /ll/) 

b+im 

j(x, z)= “y* 2) -_& 5 j’ePx dp, b > 0 (3.18) 
b-h 

In (3.19) , use has been made of the equality n, (O)a,"/* = (3n2%-q)"~/] A I'/3 which follows 
from 13.12) when k = 0. 

The first term in (3.19) is precisely equal to the flow obtained in the boundary layer 
approximation (the solution of problem (3.1) when z>o with the term awa2 omitted), 
while the second term describes the effect of transverse diffusion (perpendicular to the 
direction of motion of the flow). 

Because the expression for J is rather complex, we shall confine ourselvesto fdnding the 
principal terms of the asymptotic expansion for 3 for large and small values of Z. 

Let us first consider the case of small Z. After making use of the asymptotic expansion 
for a,& and a,' as n+co and the Euler-McLaurin summation formula /lo/, we obtain 

I= 
3% a? Ai@) 

fiy LgJ 

~ 

[ ‘4 ~‘I*,%f/* s -p-w-~(1)= (3.20) 

0 

_ r(%)(:, A 1 z)li. + O(*) = 
~+u(l) 

0 . . from (3.19). Expression (3.20) confirms the hypothesis regarding 
'. 
'. the integrability of the singularity as z-+0+. 

--c_ In the case when z> 1, by virtue of the monotonic increase 
--_ 

-0.Y I2 
in a, as n increases and the exponential decay of Ai for large 

-1 ll 1 
real and positive values of( s, we have 

Fig.2 
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A log-log plot of J(z) is shown in Fig.2. The solid line was obtained by numerical 

summation of the series (3.19), the dotted line represents the first term of the expansion for 

small values of Z (formula (3.20)), the dot-dash line corresponds to the boundary layer approxj- 

mation and the broken line to expansion (3.21) for Z> 1. It is seen that the leading term 

of expansion (3.20) for small 2.e;: 0.1 (to an accuracy of 4%) is identical with J VI. When 

z :> 1 (to an accuracy of 5%) J(Z) is described by expression (3.21). When z 3 2 , s (Z) 
merges with the boundary layer solution, the difference between the two solutions being less 

than 2%. Hence, the domain 

mately bounded by the curve 

of influence of the transverse diffusion when z>o is approxi- 
z< 1 2S’iQ 
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