348

3. NAKORYAKOV V.E., POKUSAYEV I.P. and SHREIBER I.R., Wave propagation in gas- and vapour-
Fluid media, Inst. Teplofiz. SO Akad. Nauk S$5SR, Novosibirsk, 1983.

4. BAKHVALOV I.S., Averaging of partial differential equations with rapidly oscillating co-
efficients, Dokl. Akad. Nauk 8SSSR, 221, 3, 1975.

5. BLOCH F., Uber die Quantenmechanik der Elektronen in Kristallgittern, Z. Physik, 52, 7/8,
1928.

6. BERDICHEVSKII V.L. and SUTYRIN V.G., Dynamics of periodic structures, Dokl. Akad. Nauk SSSR,
269, 2, 1983.

7. PANASENKO G.P., Averaging of a periodic structure with inhomogeneities of good conductivity,
Vestn MGU, Ser. 15, Vych. Mat. i Kibernetika, 3, 1980.

8. BERDICHEVSKII A.L. and BERDICHEVSKII V.L., Ideal fluid flow Past a periodic system of bodies,
Izv. Akad. Nauk SSSR, MzZhG, 6, 1978.

9. BERDICHEVSKII A.L., On the effective heat conduction of bodies with periocdically arranged
inclusions, Dokl. Akad. Nauk SSSR, 247, 6, 1979.

10. BERDICHEVSKII A.L., On the averaged description of a fluid containing gas bubbles, Izv.
Akad. Nauk SSSR, MZhG, 6, 1980.

Translated by D.E.B.

PMM U.S.S.R.,Vol.52,No.3,pp.348-356,1988 0021-8928/88 $10.00+0.00
Printed in Great Britain © 1989 Pergamon Press plc

ASYMPTOTIC ANALYSIS OF CONVECTIVE DIFFUSION IN PROBLEMS WITH A DISCONTINUITY
IN THE CATALYTIC PROPERTIES OF THE SURFACE AROUND WHICH THE FLOW TAKES PLACE"

V.G. KRUPA and G.A. TIRSKII

The stationary concentration distribution in the flow round bodies with a
discontinuity in their surface catalytic properties is investigated. An
asymptotic analysis of this problem is carried out on the basis of the
Navier-Stokes equations when Re — oo in the neighbourhood of the point

of discontinuity in the catalytic properties, and the corresponding boundary
value problems for the leading terms in the expansion of the required
functions are formulated. Two spatial problems are solved in which

account is taken of the transverse diffusion during the circumfluence of

a planar surface with a rectangular insert endowed with different catalytic
properties. Cases are considered when the diffusion flux of recombining
particles changes in a stepwise manner cn-passing over the surface of the
insert and when the main surface is non-catalytic but the insert is ideally
catalytic.

1. Let us consider the stationary flow of a bindary mixture of a chemically reacting com-
pressible gas along the surface of a disc and let this disc have a discontinuity in its surface
catalytic properties at a distance gz, = O (1) from the origin. We assume that ¢ = Re' — 0,

Re :=pmezdu® (quantities with the subscript oo correspond to values of the parameters in
the apprcach stream). In a rectangular system of Cartesian coordinates uz, ¥ (see /1/, for
example), the Navier-Stokes equations in the dimensionless variables
o T * ¥ x___P *__ YV % _ Kk
=T Y=, PR, Vs, A=
T L p R
* T ® *
= T, '’ T P PV oo? h CpaTe
.*__—-w‘zo
wr= 0V o

take the form (we shall omit the asterisks above the dimensionless quantities)
Vopv = 0, pv-Vv — — Vp + V.1 (1.1)
pv-Ve = &2 V({u ScVe) + w’

*Prikl.Matem.Mekhan.,52,3,450-459,1988
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pepv VT = v.Vp—(hy, — k)’ ~+ €2 [v: e + V (pepo™'VI)+
(¢pa — Com)t Sc™* VeV T]

R 1 ¢ a 0
0 —_A S = m =(Z 2
p*mRT' R‘cpw’ m_ma+mm' V_(az’0y>
e=lewl, T=]Taplh Tap=—?/30apV Vv - 2peap
Quantities with the subscripts a and m refer to atoms and molecules respectively, v =
(u, v); P P T, and h are the velocity, density, pressure, temperature and enthalpy, ¢ is the
mass concentration of the atoms, W, ¢, S¢c and ¢ are the coefficient of viscosity, the

specific heat capacity and the Schmidt and Prandtl numbers, w and R, are the chemical source
term and the universal gas constant and e 1is the deformation rate tensor.
We shall specify the boundary conditions on the body in the following. form (we assume that
the dimensionless rate constant of the heterogeneous reaction is of the order of &%k, k=
0. (1)):
v=0,7="7T, (), uSc do/dy = " ke, y = 0 (1.2)
k=k,2<0k=k,2>0

Let us assume that the external flow (unperturbed by the discontinuity in the catalytic
properties) is described by the boundary-layer equations. Then,

A= aTlonw=0 (1), U = oulon = O (1) (1.3)

where 7 = y/e is the boundary layer variable.

We shall further assume that the quantities c¢pe (T), hy (T), cpp (T), A (T), Se, u, o, v’ are
of the order of unity and that the order of magnitude of the atomic concentration ¢ when z =20
is determined from the solution of the external problem. To be specific, let us postulate
that, in the outer unperturbed boundary layer, the convective thermal flux terms, due to
thermal conduction and diffusion, are of the same order of magnitude:

8T/dn ~ dclom ~ O (1) (1.4)

It then follows from (1.2) and (1.4) that, when m =0, x =0, that is, as the point of
discontinuity is approached from the left,

c=0 (el"™), o) < 1 {1.9)
Let us now first consider the case when ;< ¢, (a stepwise transition to a surface with
a smaller or equal catalytic activity) and introduce the new variables and functions (the

guantities with zero subscript are found from the solution of the external parabolic problem
when 2 =0—, n = 0):

z=¢hy, y==~¢hy,v==chv,+...,t =8, + ..., {1.6)
T =Ty + 6T, + ..., ¢c=1cy+ &hec; 4+ ., .,
p=ptep+ .0 =poF . B=pt e,

Se =8¢, + ..., 0 =0+ ..., =¢cpo+ ...

where the string of dots denotes terms with a higher order of smallness compared with the first
term. The form of the expansions for v, T and ¢ is determined from the conditions for match-
ing with the external solution of (1.3), (1.4) and (1.5) and by the boundary conditions when
y=20. The form of the expansions for = and y is determined from the condition that, in
the neighbourhood of the point of discontinuity in the surface catalytic properties, the linear
scales for the development of diffusion are of the same order of magnitude in the longitudinal
(along the disc) and transerve directions and the condition that the convective and diffusion
terms in the diffusion equation are of the same order of magnitude.

Let us now consider the boundary conditions for the concentration ¢ on the surface y, =0
and put ¢, (&) = ¢,'et"™, ¢ = O (1) (see (1.5)). By substituting the expansion for ¢ (1.6) into
(1.2), we obtain, as &— 0,

9c,/dy, = Ky (e + cg@), o, << 0 {1.7)
0c,/0y, = K, (c,/e% % + ¢;e%7), 2, > 0
K; = pok; Scolp,

Depending on the values of the quantities «; and @ (we have already noted that a;<{oy),
four forms of conditions (1.7) are possible;

dc,/8y, = Kie,', 7, << 0 {1.8)
0c,/9y, = Ky (@ = o) 8¢,/0y; = 0 (2, < &), 2, =0



when @, == 1/,
dey /0y, = K, (¢ +¢)), 2, <0 (1.9)
dey/Byy = Ky (e o)) (og=aq), deyldy, == 0 (2 < ay), 2,27 0
when a, << Y, < a,
¢ =0, 2, <<V (1.10)

dejdy, = Kyey (ay = 1/y), 0c)/0y; == 0 (o0y > 1), 7 =0 O

when a; < o, << Y/,

e =0, 2, <<0; ¢;==0, 2, 2» 0 (1.11)
Substituting (1.6) into (1.1), we obtain, as (¢—0)
pOVI-vl == 0, pn"l"-l‘ﬁ L= "‘lel + P—Ovlgvl (112)

. . -1y 2
[OANT Ve == uSey 1V, Cy

v — -1, w2
0apoV1 V1T = 1,0, e V12T

for the first terms in the expansion.
The boundary conditions on the surface for the system of Egs.(1.12) will have the form

vi=0,T, =0,y =0 (1.13)

while, in the case of ¢, the conditions are (1.8)-(1.11).
The boundary conditions at infinity are determined by the conditions for matching with
the solution in the boundary layer:

uy = Uy, Ty == Ay, ¢; = K16Y:1, py—> 0 2 > —o0 (1.14)
Ouy /0y, = U, aT{/9y, = 4, 0c}/dy, = Kyey', py—> 0, y; -

As z— o0, the boundary conditions are determined by the approach to the boundary-layer
solution:

0u?/oxz,? = 0, *T/0z,> =0, 0%,/022 =10, p, =0, z,—> o0 (1.15)

The system of Egs.(1.12) (with the exception of the fourth equation) is identical with
the system for an incompressible viscous fluid with constant properties and admit of the obviocus
solutions of the dynamic and thermal problems

w = Uy, vy =0, pp =0, Ty = Ay,

The diffusion problem is separated from the dynamic and thermal problems and reduces to
the solution of the equation

Uy,08e,/0x; = p, Sco™ 'V, %, (1.16)

and, in the case of boundary condition (1.11l) has the trivial solution ¢; = K¢'y;. In order
to take account of the discontinuity in the boundary conditions, the following terms in the
expansion are necessary.

Let us now consider the case when a,<C@;, that is, when there is a stepwise transition
towards the surface with the greater catalytic activity. For simplicity, let us assume that
ay=1. Then, ¢=1¢ =0 (1) when 1 =0, z=0-—.

When 1!, <Ca,<C1, the solution for all of the functions (with the exception of ¢) will
be soyght in the form of (1.6), while the solution in the case of the concentration will be
sought in the form

€= ¢y g% ey ... (1.17)

By subsituting the expansions (1.6), (1.17) into (1.1) and (l1.2) we obtain the system
(1.12) with boundary conditions (1.13)-(1.15) for the first terms of the expansion in the case
of v,,T,, and p,. The boundary conditions for the concentration will have the form

Ocy /Oy, = 0, 2, << 0; 8c,0y, = Kyey, 2, >0, y, = 0 (1.18)

g =0, yy > 00; ¢ =0, &y > —o0; 3%,/02,> = 0, 2, > oo

It is obvious that, in this case, the solution of the diffusion problem reduces to the
solution of Eqg.(1.16) with the boundary conditions (1.18). We note that Eg.(l.16) with
boundary conditions (1.8)-(1.10), (1.18) and (1.14), (1.15) has been solved in a number of
papers both analytically /2-5/ and numerically /6, 7/.

When ay << Yy , it follows from (1.2) that, in this case, the change in the concentration
in the neighbourhood of the point of discontinuity will be a quantity of the order of unity.
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We shall seek the solution for z,y, v,T, I and p in the form of (1.6) while, for the remaining
functions, we shall have

c=c¢+t..,p=p;+..,8=8;+...,0=06+..., (1.19)
W=H+ . Cp=Cp T ...

Substituting expansions (1.6), (1.19) into (1.1), we obtain, as ¢ — 0, the system

Vipvi = 0, p1viVyvy = —Vip; + Vi1 (1.20)
p1vi-Ver = Vy (08¢, e))

p1epV1 V1T =V, (Map10, 1V, 1) + (epa — Cpm)iSe, Ve, -V, Ty

pi/m = py/(T,,R) = const

for the principal and first terms.
The boundary conditions for v, p, and T, are the earlier boundary conditions ((l.14)
and (1.15)) while, for the concentration, they will be

dey /oy, = 0, z, << 0; 9e,/0y; = pikySeiey/py (@ = 2y), ¢ =0 (1.21)
(g <<p), 2, 20,4, =0
€} == Cgy &y —>—00; €] = Cg, Y1 > 0}

9%¢, /02,2 = 0, 2, - o0

In the case when ay < 1/,, the zone of relaxation to equilibrium was neglected.

Let us now consider the circumfluence of a smooth convex planar profile in the above-
mentioned formulation and introduce the following natural coordinate system. The =z -axis (the
length of an arc) is directed along the surface of the body and the y-axis along the normal to
it. It is obvious that, on account of the local nature of the analysis which has been carried
out, the problem on the discontinuity in the catalytic behaviour reduces in this case to that
which has Jjust been considered, that is, (1.16) or (1.20) with the corresponding boundary con-
ditions. The quantities with the zero subscript are equal to their values obtained from the
solution of the external parabeclic problem on the surface of the body when z=2,—0 in the
natural coordinate system.

Hence, on passing from the surface for which the catalytic recombination constant is
ey to a surface where this constant is equal to &*k,, when o, dy the flow in the
neighbourhood of the discontinuity is described by Eqg.(1.16) with the boundary conditions (1.8)-
(L.11), (1.14), (1L.15). If a;=1>a, then, when Y,<a,< 1, the flow is. also described by
(1.16) with the boundary conditions (1.18). When ay<',,.the flow is described by the
boundary value problem (1.20), (1.14), (1.15) and (1.21). The size of the perturbed domain
is a quantity of the order of ¢”:= Re™"s,

2. Let us now obtain a solution of the diffusion problem when, on the planar surface,
there is a rectangular insert with other catalytic properties, the sides of which are parallel
and perpendicular to the approach stream and are described by the equations z=0 and z =0
respectively. On passing onto the surface of the insert, the concentration flux changes in a
stepwise manner. We start out from the diffusion equation written in the form (cf. (1.16))

yoc/dx = 3%/dy? + 6%/dz? (2.1)
Let us specify boundary conditions of the type (1.8) when y = 0. Then, without loss
of generality, it is sufficient tc consider the following conditions:

c=0,2=0;,c=0y—>o0; dc/dy = —1,2<C0, dc/dy =1, 2.2)
z2 >0, y=0, 0%/022 =0, 2> tFoo

II

A similar problem has been solved numerically in /7/. The term 8%/82%, omitted from
(2.1), is negligibly small when z>1 /7/.
Let us carry out a Laplace transform with respect to 2z /8/

o0

e,y = exp(— po)c (e, y, D) dz

0

Using the method of separation of variables, we get

oo
1 sin Az — AL (yp 1 1)
f=ar § e H I g= v (2.3)

—_
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where Al (s) and Ai’ (s) are the Airy function of the first kind and its derivative. A cut
is made in the p-plane along the negative real axis and the branches of the functions (o - ifi)
are fixed by the condition {a -} if})) - o as o-— 4oo. Hence, ¢ decays exponentially as
y—roo  /9/.

We note that c¢{x,¥,38) = —c {x, ¥, —z} and we shall therefore subsequently assume that
z >0. By closing the path of integration in (2.3) with an arc of a circle {A [=R in the
upper half of the 2 -plane and using Jordan's lemma /8/ (the zeros of the function Al (A%p~™)
where p is fixed and pz 0 are simple), we get

b Aty N Awph—a) ) 5
f"‘“;??{ AT ;,, AT {(—e)a, exp(— ax P"Z)J (2-4)
where —a,” (n=0,1,2,...) are the zeros of the function Ai'(s). It follows from (2.4) that
conditions (2.2) are satisfied as 2z -» -}-oo.
Next, let us seek a solution when y == 0. Then, (2.4) takes the form
> Hoptie,
A+ Z(@) exp (—a,"%p %) AL (D)
L0, )= 2020, 22:2—’“‘““ = A0 )
f(p ) }?'/3 * ( ) gn'2 * A Ai! (O) (2 5}
n=0
It follows from (2.5) that f=0 when 2z =0 since the equality A4 + Z (0) = is

valid. 1In order to prove this equality, it is sufficient to consider (in the sense of the
principal value) the integral

T _aien
X " :
§ wxe gy 9 =0

0

and to close the integration path in the upper half of the A-plane.
By applying the inverse Laplace transformation formula /8/ to f, we obtain

Sagths { foofb mj oxp {— a:/zpl/"zz + pz) ]
CTTT R 2w 5 T g dp, 62>0 (2.6)

wwicar-b N=0

from (2.5) where use has been made of the fact that 4 == Al (0)/AI" (0) = —I (M3)/(3%T (*/3)) /9/.
The first term in (2.6) corresponds exactly to the parabolic solution of system (2.1), (2.2}
{when 0%/82® is neglected) when 3z >0. The second terms describes the effect of transverse
diffusion {(directed along the z-axis). It follows from (2.6) that ¢z’ is the function
zr~'/s, that is, the size of the domain influenced by transverse diffusion increases as 2z ~ z'.
On account of the rather complex expression (2.6), we shall confine ourselves to obtaining
the main terms of the asymptotic expansicn for ¢ at small and large values of z.
By means of the Euler-McLaurin theorem /10/, we obtain, allowing for the asymptotic
nature of the behaviour of the zeros g,” as n-—» o0, /9/ that

T {1y = —4 - 2a7iptIn p'h - O (ph) 2.7

After making the substitution ¢ = pz'% in the integral (2.6), we substitute (2.7) into
(2.6) and carry out a term by term integration. Then,

C=ca'h =2 Z InZ + 0 (Z), Z = zz (2.8)

It follows from (2.8) that, in the neighbourhood of the line of discontinuity Z =0,
the function € is continuous and 4C/8Z has a logarithmic singularity.

In the case when Z 3 1, we proceed in the following manner. By applying criterion B
/11/, it can be proved that term by term integration when 2z >0 in (2.6) is valid. By
making the substitution ¢’ = pxa;‘”‘Z"/t in (2.6) and applying the method of steepest descent
/12/, we obtain

o 3% 3k 2 2a(')'/cz’,/a ) 1
C=—tmm* 2t TRz CNP (* V3, ( 1+0 W)) 2.9

where —ay’ isthevalue of the first zero (the minimum in absolute magnitude) of the function

Ai’ (s), a," = 1.,01879. In (2.9), use has been made of the property that a, increases
monotonically as n increases.
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The effect of transverse diffusion therefore falls off exponentially when Z 1.

The dependence C (Z) is shown in Fig.l where the solid line represents the numerical
solution /7/ of problem (2.1), (2.2) obtained by the method of alternating directions while
the broken line was obtained using formula (2.9). The dot-dash line corresponds to the bound-
ary-layer soltuion C= —3%/T (}/)= —1.536. It is seen that the difference between the
numerical solution and the asymptotic solution (Eg.(2.9)) is less than 5% when Z > 2.5 and
that the asymptotic solution merges with the boundary-layer solution (a: difference of less
than 2%) when Z 2> 3.5

3. Let us now consider the spatial diffusion problem when

e \\ the main surface is non-catalytic and the rectangular insert is
ideally catalytic. The solution is assumed to be continuous and
\\ bounded. We note that this problem also arises in the theory of
~12 < ﬁ a film anemometer /13/.
N Let us introduce the function 6 =1 — c. Then, the problem
S takes the form
14 y08/dz = 0%0/dy* + 0%0/0z* (3.1)
! 2 J z 0=0,2=0008y=0,2<0 8=1,2>0,y=0,2>0
0=1, y—>00; 6 >0, z> —©
Fig.1l
We replace the condition that 6 =1 when z>0 by
6 (x,0,2) =49, z2>0 (3.2)
. bico p
. _ Yo I _ap,
'q"_znibS‘ exp( aﬂp/z—} pT) P
—1i00

The p-plane is cut in the same way as in Sect.2 and g, is a small positive quantity
introduced in order to guarantee the existence of the Fourier transform of 6 and it will be
allowed to tend to zero when this becomes convenient since (when z > 0)

lim ¥ (aq. 7, 2) =1, lim P (ay, z,2) =0

G0 x>0

Let us now apply a Laplace transform with respect to * to the function 0. Then, from
(3.1) and (3.2), we get

ypf = 0%f/oy® + 8%/ 0z* (3.3)
dflay =0 2 <0, | = exp (—app*hz)/pz >0, y =0 (3.4)
f—>0,y—>o00; f—0, 2> —o0 (3.5)

Let us further assume that the last condition in (3.5) can be strengthened:
f = O (exp (byp*z)), 2> —© (3.6)

for all y and a certain real number b, > 0. The validity of this hypothesis will be confirmed
below.

Problem (3.3)-(3.6) is solved by the Wiener-Hopf method /14/. By carrying out a Fourier
transformation with respect to z, we get from (3.3), after the condition at infinity has been
satisfied, that

O =@, + O_= H (p, AL (p7h(yp + k) 3.7

1] oo
D, = 5 fe R dz, @_-—-Sfe‘“”dz
—_0 1]

where Ai(s) is the Airy function of the first kind.

From the boundary conditions when y = 0 and the requirement that the sclution should be
bounded, it can be deduced that the function ®@_ is analytic in the lower half-plane (Im (k)<<
a, Im (ip's)) and that @, is analytic in the upper half-plane Im (k) > —b, Im (ip's). The value
of p is fixed and p=%0. When y= 0, we obtain

O—D, —— L HA; 3.8
T p (k iaopl/’) I 1 (s) ( )

) oD_ yoA e )

y g — HPPAY (s), s=k*p~h

from (3.4), (3.7).



By eliminating ¥ from (3.8), we find

@ - ob. L (), e y, AUG)
i ==

Rl - U sz - SN
oy Pk iagp™) Al (s) )

We shall use the Wiener-Hopf method to solve Eg.(3.9). Since the zeros of Al (s) and
Ai’ (s) are located in the k-plane on the stright line k == ip'it (t is a real parameter) then,
by choosing g, and b, to be smaller than the square root of the absolute value of the first
zero of  Ai’ (s), we obtain that each term is definite and different in the band —b&, Im (ip') <C
Im (k) << aq Im (ip's). We next find oD_/dy. For this purpose, let us represent the left-hand
side of (3.9) as the sum of two functions which are analytic when Im (k) >> —b, Im (ip's) and
Im (k) << a, lm (ip's) respectively.

Let F = F,_(k p)F_{(k, p). The function F, (F) is analytic and does not have any zeros

in the upper (lower) k half-plane (the expressions for F, and F_ (the factorization of F)
will be obtained below). Eg.(3.9) can then be written in the form
. (F,(k, p)y—F (iaop‘/‘, PY)
D F (k, p)— + K - :
E R p) Ok — o) (3.1
. 1 aM_ n 1'F+(t'anp‘/', p)
F_(k, p) dy Pk — iaopl/‘)

Let us assume that d¢/dy has a singularity which can be integrated with respect to z
as z-—>0-+. Then, 9® /gy —> 0 as |k |- oo. According to the principle of analytic con-
tinuity, there exists an integral function [ (k, p) which is identical to each of the parts
of Eg.(3.10) where this part is defined. It tends to zero for each fixed p=£0 as k- oo
since, as we shall show later, |F4 | = O (| % [}). According to Liouville's theorem, [ (k, p)==:
0 and therefore

aO_ ik, (iap', p) F_ (K, p)

3.11
> P (3.11)
Let us now factorize the function F. Let —a, (n=1,2,...) and —a,’ (n=0,1,...) be
the zeros of the functions Ai(s) and Ai’ (s). It can be proved that
A (k) 2\ R o g
e = — () e (R a) L ()T (B (3.12)
0y k--ia) /e
e =1l4(k)= H _;’_Zé'_:_e—l/(t;n)
n=1 LR iy
where y 1is Euler's constant.
It follows from (3.9) and (3.12) that
Fa= (23 1e¥p™1s (k +- ia;,l"/ﬂp’/s) g (kp'%) (3.15)
We note that, by making use of the asymptotic nature of the behaviour of the zeros —a,’

and —a, as n-—>oo /9/, it is possible to obtain Iy = O (| k |74 and, therefore, [ =
O(kI|"y as |k |— o. By virtue of (3.11) and (3.13), we have

a0 AV (—a) F— ey ph 1L (kp™) 4
gy Al(—ad)p 7 i) (k — iaop (3.14)
g ‘ L N I H_ (iao) (k — iapp 3)
In order to prove formula (3.12), let us represent the integral functions A’ (k) and
Al (k%) in the form of an infinite product. By making use of Theorem 2 in Chapter 5 of Sect.

31 in /15/, we obtain (taking account of the numbering of the zercs —a, and -—ay'), after re-
grouping the factors,

©
ATk 1 On /m) K ta (o ks I 3.15
AT ZHFe - xp (=R LI 3.1
n=1 N

i R i

A:A\A},(%)' S L E <_,—_L),[-_(

Al (V) A - a, a, ag
It remains to note that Z;=0. In order to prove this equality, let us consider (in the

sense of the principal value) the integral

o

©O(_AT (D RAL(Y) _
3 ( LAL(RY) AT (A >d}”‘0
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and close the integration path in the upper half of the A-plane. We then use the residue
theorem.

So, apart from a constant factor, expression (3.15) is identical with (3.12) and the value
of this factor can be determined by allowing k to tend to infinity.

Let us now calculate the diffusion flux &/8y on the surface of the insert when 2z > 0.
We carry out an inverse Fourier transformation of the function #®_/dy:

+oo
PR X
- 2n ay

—o0

e'* dk (3.16)

We substitute (3.14) into (3.16) and close the integration path in the upper half-plane.
Then, by using the same reasoning as in the proof of Jordan's lemma /8/, we obtain (by making
ag tend to zero)

od ‘/l /l/3
, i 1 al*—g Vet )
]’: — a5 [1 —_ T (0) I Z n a’hﬂ I exp(— a,{p /sz)] (3.17)
- [ n

n=1

P == i lim II_(k — ia)f)

1
kaia,{z

It is also necessary to check postulate (3.6). Assuming that it suffices to verify this
when y=0, we obtain from (3.10) and (3.13) that the function ®, is regular when k= —igp'*
but has an infinite number of poles at the points -—ia, ', Closure of the integration
contour in the lower half-plane when calculating the inverse Fourier transform shows that, as

z — —O00

F=0(exp (2" — &)p')

where & is an arbitrary small positive number which confirms (3.6).
Finally, we apply an inverse Laplace transformation to the function !

b+tioo
iz, z)=_a°_(%9ﬁ_=.;? 5 je*dp, b>0 (3.18)
b—ioo

By substituting (3.17) into (3.18) and making the change of variables q = p'ha's,  we
obtain (allowing for the definition of the function Ai(s) in terms of a contour integral /11/)

R 1 3% 26\ o alt—alr
mm e e 0 .
J == ja'h AT AT (T) E:_Z‘T % (3.19)
y n=1 n
* GR’Z
HnAx( A )
Z = zx~'s

In (3.19), use has been made of the equality II. (0)a,"s = (3n2-le¥)/¢/| 4 ['» which follows
from {(3.12) when k =0.

The first term in (3.19) is precisely equal to the flow obtained in the boundary layer
approximation (the sclution of problem (3.1) when z >0 with the term 9%/8z2% omitted),
while the second term describes the effect of transverse diffusion (perpendicular to the
direction of motion of the flow).

Because the expression for J is rather complex, we shall confine ourselves to finding the
principal terms of the asymptotic expansion for J for large and small values of Z.

Let us first consider the case of small Z. After making use of the asymptotic expansion
for g, and @,/ as n— o0 and the Euler-McLaurin summation formula /10/, we obtain

L

3 Ai (1)
J=———,——S A g1 o(y= 3.20
D > ATz ) e oW ©.20)
97 \ s
1 0.4267
—e 1) =~ 1
LTl (] A Z)) +od) Z'h +od)
a from (3.19). Expression (3.20) confirms the hypothesis regarding
the integrability of the singularity as z-» 0.
In the case when Z3» 1, by virtue of the monotonic increase
in @, as n increases and the exponential decay of Ai(s) for large
_”.“

real and positive values of s, we have




o 1 B N 2eY Ve ”;/3"“()"'? . . dj,“Z e
J(Z)y~ T {W) (T) e It Ai { T )f:; (3.21)

0.5383 4 1.2552 Ai (1.06022), Z =1

A log-log plot of J(Z) is shown in Fig.2. The solid line was obtained by numerical
summation of the series (3.19), the dotted line represents the first term of the expansion for
small values of Z (formula (3.20)), the dot-dash line corresponds to the boundary layer approxi-
mation and the broken line to expansion (3.21) for Z>> 1. It is seen that the leading term
of expansion (3.20) for small Z < 0.1 (to an accuracy of 4%) is identical with J (Z). When
Z>»1 (to an accuracy of 5%) J (Z) is described by expression (3.21). When Z=2, J(2)
merges with the boundary layer solution, the difference between the two solutions being less
than 2%. Hence, the domain of influence of the transverse diffusion when 2z >0 1is approxi-
mately bounded by the curve z i 22',

REFERENCES

1. GLADKOV A.A., POLYANSKII O.YU., AGAFONOV V.P. and VERTUSHKIN V.K., Non-Equilibrium Physico-
chemical Processes in Aerodynamics, Mashisostroyenie, Moscow, 1972.

2. SPRINGER S.G. and PEDLEY T.J., The solution of heat transfer problems by the Wiener-Hopf
technique. I. Leading edge of hot film, Proc. Roy. Soc. London. Ser. A, 333, 1594, 1973.

3. SPRINGER S.G., The solution of heat transfer problems by the Wiener-Hopf technique. II.
Trailing edge of hot film, Proc. Roy. Soc. London, Ser. A, 337, 1610, 1974.

4. POPOV D.A., A problem with continuous boundary conditions and approximation of the diffusion
boundary layer, Prikl. Matem. Mekh., 39, 1, 1975.

5. BRYKINA I.G., Analytical solution of a problem on convective diffusion in the neighbourhood
of a discontinuity in the catalytic properties of a surface, Prikl. Matem. Mekh., 52, 2,
1988.

6. LING S.C., Heat-transfer for a small isothermal spanwise strip on an insulated boundary,
Trans. ASME, Ser. C.J. Heat-transfer, 85, 3, 1963.

7. GERSHBEIN E.A. and KRUPA V.G., On allowing for longitudinal diffusion in the neighbourhood
of a discontinuity in the catalytic properties of a surface, Izv. Akad. Nauk SSSR, Mekh.,
zhid, i Gaza, 7, 1986.

8. DITKIN V.A. and PRUDNIKOV A.P., Integral Transforms and Operational Calculus, Nauka, Moscow,
1974.

9. ABRAMOVICH M. and STEGUN I.A., Handbook of Mathematical Functions with Formulas, Graphs and
Mathematical Tables /Russian translation/, Nauka, Moscow, 1979,

10. LYUSTERNIK L,A. and YANPOL'SKII A.R., (Eds.), Mathematical Analysis. Functions, Limits,
Series and Continued Fractions, Fizmatgiz, Moscow, 1961.

11. WATSON G.N., The Theory of Bessel Functions, Part I /Russian translation/, IIL, Moscow,
1949,

12. NAYFEH A., Introduction to Perturbation Technigque /Russian translation/, Mir, Moscow, 1984.

13. PEDLEY T., The Fluid Dynamics of Large Blood Vessels /Russian translation/, Mir, Moscow,
1983.

14. NOBLE B., Methods based on the Wiener-Hopf Technique for Solving Partial Differential
Eguations /Russian translation/, IIL, Moscow, 1962.

15. SIDOROV YU.V., FEDORYUK M.V. and SHABUNIN M.I., Lectures on the Theory of Functions of the
Complex Variable, Nauka, Moscow, 1982.

Translated by E.L.S.



